

Online Data Collection: better way

Dmitry Arkhipkin

STAR S&C Group
Brookhaven National Laboratory

Overview

● “Old vs New” Online data collection setup;
● MQ-based setup design details;
● MQ-based setup implementation details;
● Prototype of MQ-based setup:

– Deployment

– Performance

● Summary & ToDo;

Online data collection and monitoring : existing setup

<bla>Daemon
onldb.starp

EPICS / IOC

caGet
(modified binary)

output.TXT

MySQL
onldb.starp:3501 monitors

Current setup: onldb.starp node has ~10 <bla>Daemon services running,
which execute external binary (caget) periodically, parse resulting txt file, store
data to MySQL;

Notes:
a) caget binary is a modified sample code from EPICS CA
package,unfortunately, there's no source code left, only binary..
b) <bla>Daemons contain detector-specific logic, and know how to work with
MySQL only. It is somewhat non-trivial to add new subsystem or switch to some
other db backend. Data provides are tightly coupled to data storage and data
consumers (private storage format);
c) data monitoring codes are polling very same MySQL instance for data;

caRepeater

online daemons online database

What do we expect from “New”:

● Stable data collection flow;
● Better data stream and service monitoring;
● Better cross-system communications;
● More options for real-time data processing;
● Clean codebase & easy installation and

maintenance;

Online data collection and monitoring : new approach

Let's use Message Queuing System!

AMQPCLIENT CLIENT

CLIENT

publish

request

subscribe

CLIENT

 response

MQ allows to convert existing complex, monolithic system into set of
simple, loosely coupled services.Greatly enhances scalability of a project..

Online data collection and monitoring : new approach

Proposed setup: use message bus to decouple data providers from data
storage, data consumers and data monitoring; Let's introduce these three
simple components: epics2mq, mq2db, db2mq (see below).

epics2mq
onl11.starp

AMQP / qpid
onl10.starp:5672

EPICS / IOC
Easy CA AMQP 0.10

Protobuf

mq2db
onl11.starp

MySQL
onl11.starp : 3606

AMQP / qpid
onl11.starp : 5672

AMQP 0.10
Protobuf

MySQL
(or other db)

db2mq
onl11.starp

MySQL
onl11.starp : 3606

AMQP / qpid
onl11.starp : 5672

MySQL
(or other db)

AMQP 0.10
Protobuf

client

1.

2.

3.

What we get:
a) loose coupling: only Protobuf structure descriptions are shared between all
services;
b) easy extension/expansion of any component;
c) no more constant database polling by monitoring code;
d) messages could be routed to external facilities (Remote Control Rooms or
monitors);
c) ability to use any storage engine we like (speed, maintenance, other factors)

epics2mq
(publish)

epics2mq
onl11.starp

AMQP / qpid
onl10.starp:5672

EPICS / IOC
Easy CA AMQP 0.10

Protobuf

Config file
(key = value)

epics2mq : daemon, which polls EPICS periodically, serializes results using
Protobuf, and sends message to AMQP server. EPICS & AMQP server
parameters are read from config file, as well as epics channel names to poll...

Notes:
a) there is no need to write a single line of code to add more channels to the
data collector system, just run another epics2mq instance with separate config
file listing desired epics channels!
b) epics2mq code is simple, less chance to introduce bugs;

publish →← poll

mq2db
(publish/subscribe)

mq2db
onl11.starp

MySQL
onl11.starp : 3606

AMQP / qpid
onl11.starp : 5672

AMQP 0.10
Protobuf

MySQL
(or other db)

Config file
(key = value)

mq2db : daemon, which receives messages published by epics2mq,
deserializes results (Protobuf), and stores data to backend database via
abstract interface. All AMQP and database parameters are read from config file.

Notes:
a) there's no need to modify mq2db daemon to store extra data channels: it
automatically converts “path” and data into database / table / record form for all
messages arriving over AMQP line (it will create new databases and tables
automatically)!
b) you can have two or more completely independent, parallellized data
archivers, using various databases as storage backends: just run another
instance of mq2db in parallel to your primary archiver!

← subscribe store →

db2mq
(request/response)

mq2db
onl11.starp

MySQL
onl11.starp : 3606

AMQP / qpid
onl11.starp : 5672

Config file
(key = value)

db2mq : daemon, which awaits for client data requests over AMQP, fetches
data from database backend, sends data to client via AMQP;

db2mq-client

←requestresponse →

Notes:
a) fairly standard request/response implementation, nothing special here..

AMQP server : clustering/failover

So, OK, AMQP could be a heart of the system, but what
about Single Point of Failure?

AMQP / QPID
instance A

AMQP / QPID
instance B

cluster

AMQP / QPID
instance A

AMQP / QPID
instance B

route

Well, I'd like to export only some of my queues to external
facility, can I do that?

qpid supports clustering through OpenAIS

qpid supports message routing to external qpid servers

AMQP / qpid
onl11.starp:5672

epics2mq
onl10.starp

AMQP / qpid
onl10.starp:5672

epics2mq
onl11.starp

epics2mq
onl11.starp

epics2mq
onl11.starp

mq2db
onl11.starp

MySQL
onl11.starp:3606

 fail-over

db2mq
onl11.starp

db2mq-client
onlXY.starp

data providers

data storage

online data consumer(s)

messaging service

messaging service

data archiverdata server

AMQP / qpid
fc3.star:5672

.star.bnl.gov.starp.bnl.gov

monitors

Online data collection and monitoring : new approach

MySQL
onl11.starp:3606

Browser
(client)

httpd
dean.star

gnuplot

JQuery

JQuery-UI
dbPlots_test

dean.star

AJAX

mq2db
onl11.starp

AMQP / qpid
onl11.starp:5672

Static image
(retrieved via ajax)

*.starp.bnl.gov *.star.bnl.gov internet

Current data monitoring, static images

Basic monitoring, plot is updated by user request

Enhanced data monitoring, dynamic images

Browser
(client)

httpd
dean.star Kamaloka-js

(amqp)

Protobuf-js
(decoder-only)

dbPlots_dynamic
dean.star

AMQP / qpid
onl11.starp:5672

*.starp.bnl.gov *.star.bnl.gov internet

AMQP / qpid
dean.starp:5672

Orbited
dean.star:9000

AMQP

Fully dynamic monitoring, plot updates as soon as message arrives via MQ

Flot
(dynamic image)

Enhanced service monitoring, last update/status

Browser
httpd

dean.star

admin/status.php

AMQP / qpid
onl11.starp:5672

*.starp.bnl.gov *.star.bnl.gov internet

Service Monitor

Service monitor subscribes to ALL epics channels at once : gov.bnl.star.online.epics.#
+ for a special heartbeat channel : gov.bnl.star.online.services.# to get data + status
information! No need for complex and unreliable checks of service pids, log files and
such..

Installation and Maintenance

● Installation prerequisites:
– qpid is available as rpm from Redhat MRG:

http://ftp.redhat.com/pub/redhat/linux/enterprise/5Server/en/RHEMRG/SRPMS/

– protobuf is available as rpm from Fedora (RHEL-test):
ftp://rpmfind.net/linux/fedora/updates/11/SRPMS/protobuf-2.2.0-2.fc11.src.rpm

– log4cxx is available as rpm from Fedora (RHEL-test):
ftp://download.fedora.redhat.com/pub/fedora/linux/releases/11/Everything/source/SRPMS/log4cxx-0.10.0-7.fc11.src.rpm

– EPICS is available as rpm from PSI:
 http://linux.web.psi.ch/dist/scientific/5/gfa/current/

● Installation:
– epics2mq, mq2db, db2mq are in STAR CVS :

http://www.star.bnl.gov/cgi-bin/protected/cvsweb.cgi/online/DataBase/online_api/

● Documentation:
– http://drupal.star.bnl.gov/STAR/comp/db/onlinedb/onlinemq

http://ftp.redhat.com/pub/redhat/linux/enterprise/5Server/en/RHEMRG/SRPMS/
ftp://rpmfind.net/linux/fedora/updates/11/SRPMS/protobuf-2.2.0-2.fc11.src.rpm
ftp://download.fedora.redhat.com/pub/fedora/linux/releases/11/Everything/source/SRPMS/log4cxx-0.10.0-7.fc11.src.rpm
http://linux.web.psi.ch/dist/scientific/5/gfa/current/
http://www.star.bnl.gov/cgi-bin/protected/cvsweb.cgi/online/DataBase/online_api/

Performance test : basics
4 “slow” epics2mq services running for 12 days :
- 11.2k x 4 messages published;
- 0.4 mb of RAM used (stable over the whole period)

1 “fast” epics2mq service running for 9 days :
- 77.9k messages published;
- 0.5 mb of RAM used (stable over the whole period)

1 mq2db service running for 12 days :
- 81.7k messages stored to db;
- 0.4 mb of RAM used (stable over the whole period)

Total data transfer: 9.77MB in, 13.7MB out (12 days)

MQ Broker info (qpid):
- uptime : 101 day (mq service started well before the test);
- 44 queues created;
- 9 unique connections registered;
- 0.2 mb of RAM used to serve aforementioned clients (0.2 on average, 0.3 at peak);

Crash test:
[X] epics2mq was sending malformed data (crafted) to mq, mq2db rejected it
successfully;
[X] epics2mq got “unstable” EPICS channels, correctly handled it;

BASIC TEST: SUCCESSFUL!

Performance test: high load
Initial idea of stress testing was rejected because 100+ EPICS channels I tried to
use last week belong to various STAR power supplies – not quite suitable for
stress test :)

What to expect in ~2-3 days :

Yuri created a bunch of simulated EPICS channels specifically for my testing
yesterday :
- 80 channels generating values of “double” type;
- 20 channels generating values of “string” type;
Note: all aforementioned channels appear as real live channels to my client – no
difference in access compared to real IOC access;

Stress testing:
I. Message publishing rates :
- 20 epics2mq instances, requesting 80 “double” channels every 1-5 seconds and
publishing it to mq (groups by 1-10 channels per epics2mq service);
- 5 epics2mq instances, requesting 20 “string” channels every 1-30 seconds;
- memory and cpu usage monitoring;

II. Data storage backend performance : mq2db (MySQL-based)
- local queue test (how many messages can it hold before going down);
- “data push” rate (X messages processed and stored to db in Y hours;
- peak memory and cpu usage monitoring;
 STRESS TESTING RESULTS: IN 2-3 DAYS

Summary & ToDo List

● Design of MQ-based system is complete;

● Prototypes of MQ-based system components are implemented
in C++:
http://www.star.bnl.gov/cgi-bin/protected/cvsweb.cgi/online/DataBase/online_api/

● Test setup for “EPICS to MySQL” is deployed – complete Online
Data Collection system for STAR (no data migration to Offline
for now):
http://online.star.bnl.gov/dbPlots_test/

● Real-time data flow monitoring is underway – need firewall
exceptions installed (amqp routing from star to starp domains);

● Documentation, client examples & performance testing :
http://drupal.star.bnl.gov/STAR/comp/db/onlinedb/onlinemq

● ToDo: RTS/DAQ is now looking into this setup : Jeff notified;

● ToDo: Field testing: Run 11, in parallel to “old” system;
Event processing to be added during the upcoming Run.

http://drupal.star.bnl.gov/STAR/comp/db/onlinedb/onlinemq

